the nmf weekly

globalmathproject.org/nmf-weekly • ISSUE 30

More about Pi : Solutions

ANSWER TO PUZZLE 2:

The diameter of the circle is $2 r$.
Eight-ninths of this is $(8 / 9)^{\star} 2 r=(16 / 9)^{\star} r$.
The area of the square is $(16 / 9)^{\star} r^{\star}(16 / 9)^{\star} r$, which equals $(256 / 81)^{\star} r^{\star} r$.

This gives the value $256 / 81=3.16049 \ldots$ as an approximation for pi. (This is the value mentioned in the essay.)

About the Author: Dr. James Tanton

The NMF Weekly is written by mathematician Dr. James Tanton as a resource for friends and fans of the 2021 National Math Festival.

Learn more at globalmathproject.org/nmfweekly. \& nationalmathfestival.org

ANSWER TO PUZZLE 1:

I see a two-by-two square with a triangular bite taken out of it. Its area is $4-1 / 2=31 / 2$.

There is also a triangle that is half of a one-bythree rectangle. Its area is $11 / 2$.

The remaining triangle sits inside a two-by-two square that is missing a triangle of area 2 and a triangle of area 1. It has area 4-2-1=1.

puzzle $\ddagger 2$

The Egyptians from ancient times said that you can approximate the area of a circle by drawing a square along its diameter, but with side only eight-ninths the length of the diameter. Then the area of the square is close to being the area of the circle.

What is a formula for the area of the square the Egyptions describe? What approximate value for pi does their method suggest?

Young People's Project

