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Exploding Dots

 

   

   

Squaring Puzzles 
by Gord Hamilton, MathPickle.com 

Skyscrapers 
by Conceptis and Peter Liljedahl 

   
 
The Julia Robinson Mathematics Festival really gets it right. Usually the best parts of mathematics are kept 
away from the public, as if you needed to be a mathematician to get to the fun stuff! It's refreshing to see a 
festival that brings this stuff to light, and in such a relaxed atmosphere. If you're lucky enough to have a Julia 
Robinson Mathematics Festival near you, don't miss it!  
It's the best math party around. 

Vi Hart, Recreational Mathemusician  
youtube.com/user/ViHart 

 
 

I’m not that good in math class, but this got me 
excited. I tried something really difficult. I saw 
an adult stuck at the same problem.  

Lindsey 
Grade 6 

I liked working together with my friends. The 
teacher at the table didn’t help us much. We 
did this ourselves. 

Connor 
Grade 3 

 
 

If you are interested in volunteering, organizing or hosting a Festival, 
email us at ​info@jrmf.org​. 

 
Compiled by Neha Aluwalia, Neel Surya, Maya Sissoko, and Nancy Blachman  

 

Julia Robinson
(1919 - 1985)

Exploding Dots is an astounding mathematical story that starts at the very beginning  

of mathematics – it assumes nothing – and swiftly takes you on a wondrous journey 

through grade school arithmetic, polynomial algebra, and infinite sums to unsolved 

problems baffling mathematicians to this day.  Visit globalmathproject.org to join an 

exploding community and to learn more about the Global Math Project.
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SETTING THE SCENE:  GRAPE CODES

Consider a row of dishes extending from right to left as far as we want, each 

labeled with a consecutive power of two, in order, starting with 2⁰. In the picture 

below there are six dishes. 

Question 1:  If I have ten dishes, what would be the label of the leftmost dish?

We drop any number of grapes into any of the dishes.  Each grape has the  

value given by the label of the dish in which it sits.  Then we add the values of 

the grapes.  For example, three grapes in the dish labeled 8 and two in the dish 

labeled 1 together have a total value of 8+8+8+1+1 = 26.  We will write 3|0|0|2  

as a code for this arrangement of grapes, whose value is twenty-six.  (We ignore  

all leading zeros; that is, we won’t record the empty dishes to the left of the  

leftmost non-empty dish.) 



2

Question 2:  Other “grape codes” for twenty-six are possible.  Four more grape 
codes for the number twenty-six are shown in the illustration above. 

In fact, if we look hard, we can find a total of 114 different grape codes for the 

number twenty-six.  That is, there are 114 different ways to represent the number 

twenty-six with grapes in dishes (but we need not actually list them all here). 

(a)  �Of these codes shown above, is the last one (“26”) the code that uses  

the most grapes?  Is 1|1|0|1|0 the code that uses the fewest grapes?  

How would you know? 

(b) � (Difficult) Are there two different codes for twenty-six that use  

the same number of grapes?  Can you find five different codes that  

use the same number of grapes? 

 
Question 3:  What are the values of the following ‘grape codes’? 

(a)  2|1|1|0     (b)  7|0|0     (c)  1|1|1|1     (d)  2|2|2|2|2     (e)  1|0     (f)  1|0|0|1

 
Question 4:  Find at least two grape codes for each of the following numbers.  
Are there any numbers for which only one grape code is possible? 

(a)  12     (b)  6     (c)  3     (d)  1     (e)  24     (f)  25     (g)  29

 
Question 5:  Using only two grapes, code at least 6 different numbers,  
all of which are greater than 10.
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Question 6:  Suppose we list all the numbers that can be coded using two 
grapes.  The list begins with:

2, 3, 4, 5, 6, 8, 9, 10 . . . 

What is the 50th number on this list?

 
Question 7:  There are 6 different grape codes for the number six:

(a) � Show that there are also 6 grape codes for the number seven.  (Hint: can 

you use the six codes above to do this?)  Draw diagrams for each of the 

codes.  Find some ways in which the set of diagrams for seven differs from 

the set of diagrams for six.

(b)  �Is it true in general that the count of grape codes for an odd number is 

equal to the count of grape codes for the even number just before it?

(c)  �Is it true in general that the count of grape codes for an even number is 

equal to the count of grape codes for the odd number just before it?
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The table shows the number of different grape codes for the first few even 
numbers.

(d)  Fill in the three missing entries.  Care to find a few more entries?

(e) � Find some patterns in the sequence of numbers you are generating:   
 

2, 4, 6, 10, 14 . . .    
 
Can you be sure any patterns you see will continue? 

Now suppose we have six dishes, labeled as before.  A code for a number with at 
most one grape in each dish is called a binary code for that number.  For instance, 
1|1|0|1|0 is a binary code for the number twenty-six and 1|1|0  is a binary code for 
the number six.  On the other hand, 2|1|0  is not a binary code for any number, 
because in a binary code, no dish can contain more than one grape.

 
Question 8:  Find a binary code for the number one hundred. 

(a)  Can you be sure that every positive integer has a binary code?

(b)  Could a positive integer have two different binary codes?

 
(Questions (b) and (c) above are not so simple. We will address problem (b) in the  
next session. But what are your thoughts right now?)
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THE 1  2 MACHINE

Question 9:  The binary code for the number five is 1|0|1.  If we put one more 
grape into the ones dish, the overall grape value is six and the grape code is 1|0|2.  
How can you rearrange the grapes so that the value is still six, but you now have  
a binary code?  That is, how can you adjust the representation of the number six  
so that there is no more than one grape in each dish? 

Question 10:  Find the binary code for the number seven.  Add one grape to  
the ones dish to make the new value equal to eight.  How can you rearrange the 
grapes to represent the same value as a binary code?

Question 11:  More generally, suppose you have the binary code for the 
number N.  How could you construct the binary code for the number N+1? 

In the story Exploding Dots from the Global Math Project (see www.gdaymath.
com/courses/exploding-dots/), our row of dishes becomes a “two-one machine,” 

written “1  2.”

One puts dots (or grapes) into the rightmost box and lets them “explode” in the 

following way:

Whenever there are two dots in a box, any box, they explode and disappear– 

KAPOW!–to be replaced by one dot located in the box to the left. 

And indeed, two dots in any one box have the same combined value as one dot 

just to their left.
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In this way, placing a number of dots in the rightmost box eventually generates a 

representation of that number with at most one dot in each box. This shows that 

every positive integer has at least one binary code. For example, placing 6 dots 

into the machine eventually gives the binary code 1|1|0 for the number 6.

Question 12:  (a)  What numbers have the following binary codes?

(i)  1|0|1|1|0        (ii)  1|0|0|1|0|0|1|0|0         (iii)  1|1|1|1|1        (iv)  1|1|1|1|1|0

(b) � Find binary codes for the first 20 positive integers.  What do you notice about 

the codes for the even numbers?  The codes for the odd numbers? 

b)  Anouk says she invented a divisibility rule for the number 4:

A number is divisible by 4 precisely when its binary code ends with two zeros. 

Do you agree with her rule?

(c) � (Difficult!)  Can you devise a divisibility rule for the number 3 based on the 

binary codes of numbers?

Question 13:  Aba has a curious technique for finding the binary code of a number. 
She writes the number at the right of a page and halves it, writing the answer one place 

to its left, ignoring any fractions if the number was odd.  She then repeats this process 

until she gets the number 1 .  Then she writes 1 under each odd number she sees and 0 

under each even number.  The result is the binary code of the original number. 

Here’s her work for computing the binary code for 22: 

Why does her technique work?
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Question 14:  Here’s a fun way to compute the product of two numbers, say,  
22 × 13:  Write the two numbers at the head of two columns, halve the left 

number (ignoring fractions) and double the right number, and repeat until the 

number 1 appears in the left-hand column.  Then cross out all the rows that have 

an even number on the left, and add all the numbers on the right that survive.  

That sum is the answer to the original product!

Why does this method work?

Question 15:  Allistaire suggested that the binary code for -1 should be  
. . . 1|1|1|1|1|1|1;  that is, an infinitely long string of ones going infinitely far to the 
left.  He argued that you can check this by placing this infinite string in a  
1  2 machine, then adding a single dot in the rightmost box.  This produces, after 
explosions, an empty diagram:  zero.

This showed, Allistaire argued, that (-1) + (+1) = 0 if we use this way of coding the 

number -1. 

Do you agree?
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GRAPE CODES AND BINARY CODES

The following diagram shows all the choices one can make when performing 

explosions on 6 dots to lead to the binary code 1|1|0 for the number 6.  The 

diagram also shows all 6 ways we can represent 6 using grapes!

Question 16:  (a) Draw an analogous diagram for 12 dots placed in a 1  2 
machine.  Show all the choices one can make for explosions and show that all 
paths lead to the same final binary code 1|1|0|0.

(b)  There are 20 ways to represent the number 12 with grapes in dishes.  Do all 

20 grape codes appear in your diagram?  Do all paths lead to the same binary 

code for 12? 

(c)  In general, when one draws a diagram of all possible explosions for n dots 

placed in a 1  2 machine, is the diagram sure to contain all the possible grape 

codes for N?  Do all paths lead to the same final binary code for N? 

Just as we can ‘explode’ dots, we can 

 ‘unexplode’ them as well:  one dot in  

a particular box unexplodes to create  

two dots in the box just to the right:

explode

unexplode
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Question 17:  Starting with six dots in a 1  2 machine, one can perform a 
sequence of five explosions and “unexplosions” that produces all 6 codes for the 
number six in terms of grapes.

(a)  �Starting with 1 dot in the 1  2 machine, is there a sequence of 19 

explosions and unexplosions that takes one through all 20 possible codes 

for 12 in terms of grapes? 

(b) � Actually, prove that for each positive integer N, there is a sequence of  

explosions and unexplosions one can perform—starting with N dots in 

the rightmost box of a 1  2 machine—to pass through all the possible 

grape codes of N without repeating a code.  

 

Comment:  The 2018 ARML power question at www.arml.com also explores 

these questions about codes for numbers, but not in the language of grapes or of 

Exploding Dots.
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NAPIER’S MULTIPLICATION CHECKERBOARD

Five centuries ago, Scottish mathematician John Napier (1550 – 1617), best 

known for his invention of logarithms, suggested working with a two-dimensional 

array of boxes, with each row and each column labeled with a power of two.   

A dot (or a grape or a pebble) in any box is given the value of the product of its 

column and row numbers.  For example, one dot in this picture has the value  

64 × 32 = 2048 and the other has the value 4 × 4= 16.  Together they represent the 

number 2048 + 16 = 2064.  One can thus represent very big numbers on this two- 

dimensional array.

Napier noted that you can slide a dot anywhere on the southwest diagonal on 

which it sits and not change its value and hence not change the total value of 

several dots on in the grid. 

Question 18:  Explain why a single dot in any of the light blue cells will have the 
same value.  Explain why a single dot in any of the light purple cells will have the 
same value.
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Napier also noted that each row of the table is operating as its own machine, as is 

each column!

Any two dots in the same cell can be erased—they explode, “kaboom”—and can be 

replaced either by one dot placed one cell to their left, or by one dot placed one cell 

above them, your choice! 

One can also unexplode dots: 

By placing dots in the grid we can represent large numbers, and by performing 

slides, explosions, and unexplosions, we can change the representations of those 

numbers in lots of different—but always equivalent—ways.  And with this power, 

Napier realized we can perform some sophisticated arithmetic! 

Make sure you actually try what follows with a checkerboard or hand-drawn grid 

of squares using pennies or counters, or grapes!  The grid does not have to be  

8 by 8: any size will do.  People in the 1600s used a square sheet of cloth marked 

into squares and beads for counters.
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MULTIPLICATION

As we saw earlier, the binary code for twenty-

two is 1|0|1|1|0.  Here is the number twenty-two 

represented in Napier’s checkerboard as 16 × 

1 + 4 × 1 + 2 × 1.  (Since the bottom row of the 

checkerboard is its own 1  2 machine, one 

could place 22 dots into the right corner box and 

perform explosions in just the bottom row to get 

this binary code.)

Now here now is 22 × 8 plus 22 × 4 plus 22 × 1 

in Napier’s checkerboard, that is, here is 22 × 13.

To see what the value of this product is, slide all the dots diagonally down to the 

bottom row, perform explosions along the bottom row, and read off the answer! 

We see, after adding an extra box, that 22×13 is 256 + 16 + 8 + 4 + 2 = 256 + (16 + 

4) + (8 + 2) = 286. 
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Question 19:

(a)� What product is represented in this homemade checkerboard?  
What is the usual representation of this number?

(b)  Compute 51 × 42 with a checkerboard. 

(c)  Keep computing different products via Napier’s method.  Have some fun!

Question 20:  (a)  Here is the result of multiplying some number by 9 with 
Napier’s checkerboard.  What number was multiplied by 9?  Can you see the 
answer by sliding dots to recreate the original multiplication problem?
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(b)  The result of multiplying some number by 5 is 65, as shown.   

Can you recreate the original multiplication problem by unexploding  

and sliding dots? 

(c)  The previous two problems ask us to reverse the multiplication process.  

That is, they are each asking us to answer a division problem.   

(They first had us compute 108 ÷ 9 and the second 65 ÷ 5.)   

Can you compute 247 ÷ 13 on Napier’s checkerboard?   

Can you compute 250 ÷ 13 and find the remainder of 3?

Develop a general technique for performing long division on Napier’s 

checkerboard.

(d)  Can you use Napier’s checkerboard to find a number which, when multiplied 

by itself, gives the answer 196?  What do you see if you follow the same 

checkerboard technique to try to find the square root of 200? 

Comment:  See Experience 11 of www.gdaymath.com/courses/exploding-dots 
for more discussion of Napier’s checkerboard.  (There we also discuss how Napier  

suggested performing addition and subtraction on his checkerboard too,  

essentially using only the bottom row of the checkerboard; that is, using only a 

single 1  2 machine.) 



For more mathematical puzzles, visit...

NRICH promotes the learning of 
mathematics through problem solving. 
NRICH provides engaging problems, 
linked to the curriculum, with support 
for teachers. (Grades K-12) 
nrich.maths.org

Dan Meyer has created 
problems and videos to 
inspire students to solve 
problems. (Grades 4-12)
blog.mrmeyer.com/
starter-pack

Galileo.org strives to inspire 
a passion for learning. 
(Grades K-12)
galileo.org/classroom-examples/
math/math-fair-problems

Wild Maths is mathematics without 
bounds. Visitors are free to roam 
and develop as  mathematicians. 
(Grades K-12) wild.maths.org

Youcubed’s main goal is to inspire, educate, and 
empower teachers of mathematics, by providing 
accessible and practical materials. 
(Grades K-12) youcubed.stanford.edu/tasks

A resource for educators passionate 
about improving students’ 
mathematics learning and 
performance. (Grades K-12)
insidemathematics.org

Cool math 
problems that 
are beautiful and
thought provoking. 
Favorite lessons
and complex problems. 
(Grades K-6)
mathforlove.com/lesson-plan/

Interactive 
mathematics 

miscellany 
and  puzzles.

(Grades 1-Adult)
cut-the-knot.org

Math Central 
is an 
award-winning 
website with 
investigations for
 teachers and students. 
(Grades 7-12)
mathcentral.uregina.ca/mp

On the NY Times website, 
Numberplay generally presents 
mathematical and/or logical 
puzzles and problems. 
(Grades 5-Adult) 
nytimes.com/column/numberplay

Brilliant's problems are created by people all 
over the world. Members learn how to solve 
problems by engaging in a vibrant community. 
(Grades 2-Adult) brilliant.org

The Grabarchuk family produces puzzles for websites, mobile devices, 
and books. (Grades 4-12) GrabarchukPuzzles.com

While a standard textbook cannot 
adapt to each individual learner, 
expii.com was created to do just 
that. (Grades 5-12) expii.com and 
expii.com/solve

Alex Bellos’ 
Monday Puzzle. 
(Grades 5-Adult)

 www.theguardian.com/
science/series/

alex-bellos-monday-puzzle

Gord Hamilton has a passion 
for getting students to realize 
that mathematics is beautiful. 

(Grades K-12)
MathPickle.com

minds 
Empowering

through play. 
(Grades K -12)
thinkfun.com

MathsChallenge.net is a 
website dedicated to the 
puzzling world of mathematics. 
(Grades 4-Adult) 
MathsChallenge.net

Project Euler offers for free 
engaging computation problems 
that will require more than just 
mathematical insights to solve. 
(Grades 5-Adult)  projecteuler.net

G4G features puzzles, games, magic 
tricks, and crafts.  (Grades K-Adult)
celebrationofmind.org/
puzzles-games

Explore the richness and beauty 
of mathematics through puzzles 

and problems that encourage 
collaborative and creative 

problem-solving.
(Grades K-12)

 jrmf.org


