Uplifting Mathematics for All

Exploding Dots ${ }^{\text {TM }}$

HANDOUTS

Experience 5:
 Division

Handout A: Division and Remainders 2
Solutions to Handout A 3
Handout B: Wild Explorations 6

Exploding Dots

Experience 5: Division

Access videos of all Exploding Dots lessons at: http://gdaymath.com/courses/exploding-dots/
Handout A: Division and Remainders
This picture shows that $276 \div 12$ equals 23 .

$$
12=\begin{array}{|l|l|}
\hline \bullet & \bullet \\
\hline
\end{array}
$$

Here are some practice questions you might, or might not, want to try.

1. Compute $2783 \div 23$ by the dots-and-boxes approach by hand.
2. Compute $3900 \div 12$.
3. Compute $46632 \div 201$.
4. Show that $31533 \div 101$ equals 312 with a remainder of 21 .
5. Compute $2789 \div 11$.
6. Compute $4366 \div 14$.
7. Compute $5481 \div 131$.
8. Compute $61230 \div 5$.

Solutions to Handout A

1. $2783 \div 23=121$

$$
23=\bullet \bullet \cdot \because \cdot
$$

2. $3900 \div 12=325$. We need some unexplosions along the way. (And can you see how I am getting efficient with my loop drawing?)

3. $46632 \div 201=232$.

$$
201=\begin{array}{|l|l|l|}
\hline \bullet \bullet & & \bullet \\
\hline
\end{array}
$$

4. $31533 \div 101=312$ with a remainder of 21 . That is, $31533 \div 101=312+\frac{21}{101}$

5. We have $2789 \div 11=253$ with a remainder of 6 . That is, $2789 \div 11=253+\frac{6}{11}$.

6. $4366 \div 14=311+\frac{12}{14}$.

7. $5481 \div 131=41+\frac{110}{131}$.

8. We certainly see one group of five right away.

Let's perform some unexplosions. (And let's write numbers rather than draw lots of dots. Drawing dots gets tedious!)

We see $61230 \div 5=12246$.

Exploding Dots

Experience 5: Division

Access videos of all Exploding Dots lessons at: http://gdaymath.com/courses/exploding-dots/

Handout B: WILD EXPLORATIONS

Here is a "big question" investigation you might want to explore, or just think about. Have fun!

EXPLORATION: LEFT TO RIGHT? RIGHT TO LEFT? ANY ORDER?
When asked to compute $2552 \div 12$, Kaleb drew this picture, which he got from identifying groups of twelve working right to left.

He said the answer to $2552 \div 12$ is 121 with a remainder of 1100 .
Mabel, on the other hand, identified groups of twelve from left to right in her diagram for the problem.

She concluded that $2552 \div 12$ is 211 with a remainder of 20 . Both Kaleb and Mabel are mathematically correct, but their teacher pointed out that most people would expect an answer with smaller remainders: both 1100 and 20 would likely be considered strange remainders for a problem about division by twelve. She also showed Kaleb and Mabel the answer to the problem that is printed in the textbook.

$$
2552 \div 12=212 R 8
$$

How could Kaleb and Mabel each continue work on their diagrams to have this textbook answer appear?

